Maths Calculation Policy

For the New National Curriculum

Always think:
Can I do it mentally?
Can I do it with a jotting?
Do I need a written method (vertical layout)?
Do I need a calculator?

ADDITION GUIDELINES		
Stage One	Stage Two	Stage Three
Prerequisite skills (based on the practical) Counting numbers to 20 (using familiar / practical resources) Place numbers to 20 in order Bonds up to 10 and to make 10 1 more than a number Addition as combining groups $1,2,3,4,5,6,7$ Addition as counting on Doubling numbers within 20	Prerequisite skills (based on the practical) Relate number bonds to 10 to add multiples of 10 up to a total of 100 e.g. if $3+4$ is 7 then $30+40$ is 70 \square Use familiar objects to recognise the place value of 2 digit numbers. 24 Recognise and explain 24 is ' 2 tens and 4 ones' Progressing to: PARTITIONING AND RECOMBINING Partition into tens and ones and recombine Pre J10 (before jumping in 10s) $\begin{aligned} 12+23 & =10+2+20+3 \\ & =30+5 \\ & =35 \end{aligned}$ Model this on a bead bar and practise on 100beadstrings, showing the 'collection' of 10s and then the ones. i.e. " 2 tens and 1 ten makes 3 tens, which is 30. Then 3 and 2 makes 5 ones. Altogether we can see 3 tens and 5 ones, which is 35 ." Check by counting in tens and ones along the bead bar. Model and practise with place value arrow cards, numicon, bead strings or Dienes, using known facts and place value to calculate each step.	Partition into tens and ones - Partition one number and recombine. - Count on by partitioning the second number only e.g. $\begin{aligned} 36+53 & =53+30+6 \\ & =83+6 \\ & =89 \end{aligned}$ As modelled below as necessary Children need to be secure adding multiples of 10 to any twodigit number including those that are not multiples of 10 . $48+36=84$ First J10 then T10 Add a near multiple of 10 to a two-digit number (Overjumping - OJ) Secure mental methods by using a number line to model the method. Continue as in Stage 2 but with appropriate numbers E.g. $35+19$ is the same as $35+20-1$. Once a child is able to add 3 digit numbers on a number line securely move on to vertical expansion. $+/=$ signs and missing numbers Continue using a range of equations as in Stage 1 and 2 but with appropriate, larger numbers.

ADDITION GUIDELINES		
Stage Four	Stage Five	Stage Six
Partition into hundreds, tens and ones and recombine Either partition both numbers and recombine or partition the second number only e.g. $\begin{aligned} & 358+73=358+70+3 \\ & =428+3 \\ & =431 \end{aligned}$ Horizontal Expansion $367+185=552$ $\begin{array}{r} 367 \\ +\frac{185}{400} \\ (300+100) \\ 140 \\ \frac{12}{}(60+80) \\ \frac{1752}{} \end{array}$ Moving on to $\begin{aligned} & 367+185=552 \\ & 367 \\ & +\frac{185}{400} \\ & 140 \\ & \frac{12}{552} \end{aligned} \quad \text { (without use of brackets) }$	Adding the least significant digits first $\begin{aligned} & 24 / \\ &+\quad 176 \\ & \hline 13(7+6) \\ & 110(40+70) \\ & \frac{300}{423}(200+100) \end{aligned}$ Working from left to right: 'Read' the answer from left to right, using knowledge of place value and referring to the value of each digit i.e.:"four hundred and twenty three" NOT adding up columns for the final answer Moving on to $\begin{array}{r} 247 \\ +\frac{376}{13} \\ 110 \\ \underline{500} \\ \underline{623} \end{array} \quad \text { (without use of brackets) }$ Moving on to a compact method $\begin{array}{r} 247 \\ +\quad 376 \\ \hline \frac{623}{11} \end{array}$ Working from right to left: " $7+6$ is 13 . Partition the 13 into 10 and 3 , 'carry' the ten into the tens column, writing it as 1 to represent one ten." n.b. the ' 1 ' can be written at the top or bottom of the calculation. It is NOT "carry the 1" Consolidation and practice of the previous key facts.	Extend to numbers with at least four digits $\begin{aligned} & 3587+675=4262 \\ & 3587 \\ & +\frac{675}{4262} \\ & \frac{111}{11} \end{aligned}$ Revert to expanded methods if the children experience any difficulty. Partition into hundreds, tens, ones and decimal fractions and recombine Either partition both numbers and recombine or partition the second number only e.g. $\begin{aligned} 35.8+7.3 & =35.8+7+0.3 \\ & =42.8+0.3 \\ & =43.1 \end{aligned}$ Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits). $\begin{array}{r} 72.8 \\ +\quad 54.6 \\ \hline \frac{127.4}{11} \end{array}$

ADDITION GUIDELINES		
Stage Four	Stage Five	Stage Six
Why most significant digit first and then least significant digit first? When adding and subtracting on a number line we start with the most significant digit first (e.g. add the tens then add the units). This is why horizontal expansion starts with the most significant digit first. Once the children are secure in this, it changes to adding the least significant digit first. This bridges the gap between these two stages (many children will only need to see it a few times to understand the relationship but others may need more experience at each stage) It is crucial to know or be able to derive key number facts TO + TO mentally or with jottings before progressing to Stage Five. $\pm /=$ signs and missing numbers Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers. N.B. Please refer to the end of year expectation for the size and range of numbers to be using e.g. ThHTO, decimals, etc.	N.B. Please refer to the end of year expectation for the size and range of numbers to be using e.g. ThHTO, decimals, etc.	```Extend to numbers with more than 4 digits or decimals with up to 3 places \(13.86+9.481=23.341\) \(\begin{array}{r}13.86 \\ +\quad 9.481 \\ \hline \frac{23.341}{111}\end{array}\) \(12350+4921\) \(\begin{array}{r}12350 \\ +\quad 4921 \\ \hline 17271 \\ \hline 1\end{array}\)``` Revert to expanded methods if the children experience any difficulty. N.B. Please refer to the end of year expectation for the size and range of numbers to be using e.g. ThHTO, decimals, etc.

End of Year Objectives for Addition

Yr1 - recall and jottings for $\mathrm{O}+\mathrm{O}, \mathrm{T}+\mathrm{O}, \mathrm{T}+\mathrm{T}, \mathrm{TO}+\mathrm{O}$ (within 20 including 0)
$\mathrm{Yr} 2-\mathrm{TO}+\mathrm{O}, \mathrm{T}+\mathrm{TO}, \mathrm{TO}+\mathrm{TO}, \mathrm{O}+\mathrm{O}+\mathrm{O}$
Yr 3 - mental methods for HTO + O, HTO +T, HTO +H ; written methods for HTO $+\mathrm{TO}, \mathrm{HTO}+\mathrm{HTO}$
Yr4 - written methods as above and ThHTO + ThHTO, O.t+O.t, £O.th+£O.th
Yr5 - written method for addition of numbers with more than four digits; 2 or more integers, decimals with 2 dp e.g. 29.78 + 54.34
Yr6 - As above

Differentiation Steps for each Stage:

- Not crossing tens
- Crossing Tens
- Crossing Hundreds Only
- Crossing Tens and Hundreds

In addition:

- The number line must be modelled as an image to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation can be carried out mentally then do not give it to practise vertical calculation, e.g. TO + TO should not be calculated vertically.

Always present calculations horizontally in order to consider mental calculations first.

SUBTRACTION GUIDELINES		
Stage One	Stage Two	Stage Three
Prerequisite skills (based on the practical) Number bonds to 10 Counting back from 20 Find one less than a given number Subtract using quantities and objects 2 single digit numbers Count back to subtract single digit numbers (1) $3 \longdiv { 4 } 5 \longdiv { 6 } 7 8 9 1 0$ There are two concepts linked to subtraction: Subtract - where it is natural to count back to 'take away' Find the difference - where the understanding of the vocabulary leads to using addition to count on [complementary addition]. Understand subtraction as 'take away'	There are two concepts linked to subtraction: Subtract - where it is natural to count back to 'take away' Find the difference - where the understanding of the vocabulary leads to using addition to count on [complementary addition]. Use known number facts and place value to subtract Using knowledge of number bonds to subtract mentally from multiples of 10 s e.g. 30-4 Using knowledge of number bonds to subtract mentally multiples of 10 from multiples of 10 e.g. if $7-4=3$ then 70 $-40=30$ Using knowledge of number bonds to subtract mentally e.g. if $8-3=5$ then $28-3=25$ $\begin{aligned} & \text { Use of T10 for TO-O } \\ & \begin{aligned} & 22-5=22-2 \\ &= 20-3 \\ &-3 \end{aligned} \end{aligned}$ Use of J 10 using multiples of 10 Example: 80 - 30 Use of J10 $\begin{aligned} 37-12 & =37-10-2 \\ & =27-2 \\ & =25 \end{aligned}$	Use known number facts and place value to subtract Continue as in Stage 2 but with appropriate numbers e.g. $197-53=144$ Use counting on to find the difference $132-117=15$ Secure knowledge in use of J 10 and T 10 to count back and find the difference. TO-TO, HTO-TO, HTO-HTO By the end of this stage children should know complements to 100. They can then use this knowledge to calculate HTO-TO, HTO-HTO. Subtract mentally a 'near multiple of 10 ' to or from a two-digit number Continue as in Stage 2 but with appropriate numbers e.g. $78-49$ is the same as $78-50+1$ $-=$ signs and missing numbers(inverse) Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.

SUBTRACTION GUIDELINES		
Stage One	Stage Two	Stage Three
Use practical and informal written methods to support the subtraction of a one-digit number from a one digit or two-digit number and a multiple of 10 from a two-digit number. I have 11 toy cars. I lost 5 of them. How many are left? Start with bead strings / bars and move onto number lines below. Use the vocabulary related to subtraction and symbols to describe and record subtraction number sentences (for the example above it would be $11-5=6$) Recording by - drawing jumps on prepared lines / tracks Use practical resources to find the difference between two small numbers e.g. 6 and 7 Count on from smallest to largest number to find the difference where numbers are close in value. (e.g.9-7) $\begin{array}{ll} -=\text { signs and missing numbers(inverse) } \\ \hline 7-3=\square & \square=7-3 \\ 7-\square=4 & 4=\square-3 \\ \square-3=4 & 4=7-\square \\ \square-\nabla=4 & 4=\square-\nabla \end{array}$	Use of T10 where necessary 32-17 Subtraction for finding the difference using counting on e.g. $38-23$ - = signs and missing numbers(inverse) Continue using a range of equations as in Stage 1 but with appropriate numbers. Extend to $14+5=20-\square$ (inverse)	

SUBTRACTION GUIDELINES

($-=$ signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)

Stage Four
Find a small difference by counting up (relating to
inverse)
e.g. $5003-4996=7$ This can be modelled on an empty number line (see complementary addition). Children should be encouraged to use known number facts to reduce the number of steps.

Use known number facts and place value to subtract $92-25=67$

Counting on

Use of number facts to count up to find the difference (T10, T100). $754-568=186$

For those children with a secure mental image of the

 number line they could record the jumps only:$754-568=186$
754
-568
32 (600)
100 (700)
54 (754)

Counting on

Use of number facts to count up to find the difference (T10, T100). This is used in the context of inverse.
$14+168=182$ so:
$468-286=182$

OR
$754-286=468$

454 (754)
468
Reduce the number of steps to make the calculation more efficient.
Extend to 2 places of decimals

SUBTRACTION BY EXPANDED DECOMPOSITION (With

 higher attainers secure in number facts and use of the number line).Subtracting with no repartitioning needed:

$345-123$
$300+40+5$
$-(100+20+3)$
$200+20+2$

Progress to 4 digit numbers
Teach on a number line first to subtract using T10, T100, T1000 (children should choose the most efficient method) either counting on or counting back.
e.g. $8000-2785=5215$

To make this method more efficient, the number of jumps should be reduced to a minimum through children knowing:

- Complements to 1 , involving decimals to two decimal places ($0.16+0.84$)
- Complements to 10, 100 and 100

Counting on

$$
6467-2684=3783
$$

OR
$6467-2684=3783$

$16(2700)$	can be refined to	$316(3000)$
$300(3000)$		$\frac{3467}{3783}(6467)$
$3467(6467)$		

Reduce the number of steps to make the calculation more efficient.
Extend to 2 places of decimals

Subtraction by Standard Decomposition

$$
\begin{gathered}
346-128 \\
3^{3} 4^{/}{ }^{1} 6 \\
-128 \\
\hline 218
\end{gathered}
$$

SUBTRACTION GUIDELINES

($-=$ signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)

Use known number facts and place value to subtract

$$
0.5-0.31=0.19
$$

N.B. Please refer to the end of year expectation for the size and range of numbers to be using e.g. ThHTO, decimals, etc.

Stage Five

Partitioning each number and working from right to left, subtracting the bottom number form the top. Express each part as its value represented, i.e. " $40-20$ ".

Moving onto subtracting with repartition of tens only:

Again, partitioning each number and working from right to left, subtracting the bottom number from the top. Where the subtraction is not possible i.e. 2-4 can't be done, the next value is "REPARTITIONED". So, "repartition $50+2$ into $40+$ 12 ". It is important to cross out the whole number and replace completely. Do NOT put a 'one in the air'! (It is not a 1, it is a 10.) Then repeat the subtraction process, this time " $12-4=8$ " and " $40-10=30$ "
N.B. Please refer to the end of year expectation for the size and range of numbers to be using e.g. ThHTO, decimals, etc.

Stage Six

It is still vital that the correct language of place value is used. The tens are REPARTITIONED (not "'borrow' a 1" and it is not " 3 takeaway 1 " but " 300 takeaway/subtract/ minus 100").
N.B. Please refer to the end of year expectation for the size and range of numbers to be using e.g. ThHTO decimals, etc.

End of Year Objectives for Subtraction

Year 1 - mentally subtract O-O, TO-O, TO- TO (up to 20 e.g. 15 - 12)
Year 2 - mentally TO-O, TO-multiple of 10, mentally with informal jottings TO-TO
Year 3 - subtract mentally, HTO - O, HTO - T, HTO - H, TO - O, TO-TO. Formal written methods for TO-TO, HTO-TO, HTO-HTO
Year 4 - as above and efficient written methods for ThHTO - ThHTO, ThHTO - HTO, O.t - O.t, £O.th-£O.th
Year 5 - Efficient written methods for subtraction of 2 integers with more than 4 digits e.g. 45230-12432 and decimals with up to 2dp e.g. 54.34-29.78
Year 6 - as above

Please note:
There are two concepts linked to subtraction:
Subtract - where it is natural to count back to 'take away'
Find the difference - where the understanding of the vocabulary leads to using addition to count on [complementary addition].

- Children should not move on to a written method if they are not completely confident with using a number line.
- Children will need to have had experience of different types of jumping on a number line e.g. T10 (target the ten), J10 (jump in 10s) and know how to partition numbers in different ways.
- These methods can also be easily applied, at different levels, to finding differences in values of money, measures and time.

Always present calculations horizontally in order to consider mental calculations first.

MULTIPLICATION

MENTAL STRATEGIES

Strategies to calculate the facts not yet recalled ARE essential:

$\times 2$	double	$\div 2$	halve
$\times 4$	double-double	$\div 4$	half and half again
$\times 8$	double-double-double	$\div 8$	half, half and half again

$\times 8$
$\times 8$
Model jouble-double-double
dotings for halving and doubling and use known facts and place value

"Half of 6 tens or half of 60 is 3 tens or 30"

"Half of 4 is $2 . "$

Where the number of tens (or hundreds) is odd and the fact unknown, use known facts to derive the new fact:


```
* 5 1/2 of * 10
*50 1/2 of * 100
*25 1/4 of \times100 (or 1/2 and 1/2 again of }\times10
* 12 < 10 plus < 2 (double)
*15 }\times10\mathrm{ plus 1/2 of }\times1
```

MULTIPLICATION GUIDELINES		
Stage One	Stage Two	Stage Three
Prerequisite skills (based on the practical) Multiplication is related to known facts including doubling and counting groups of the same size. $3+3$ E.g. use of dominoes and dice. Counting using a variety of practical resources Numicon and bead strings Counting in 2s e.g. counting socks, shoes, animal's legs... Counting in 5 s e.g. counting fingers, fingers in gloves, toes... Counting in 10s e.g. fingers, toes...	$$ Arrays and repeated addition Looking at rows $3+3$ Looking at rows 2 groups of 3 $2+2+2$ 3 groups of 2 If the calculation is $\mathbf{3 x} 4$ for example, children should understand that this means $3+3+3+3$. Children should also understand the commutative law and be able to use 4 $x 3$.	$\mathrm{x}=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Arrays and repeated addition Continue to understand multiplication as repeated addition and continue to use arrays and number lines (as in Stage 2). Use known facts and place value to carry out simple multiplications Partition $23 \times 3=$ Moving on to: $100+60+70+42=272$ At the end of Stage 3 the children should know their 12 x 12 times tables.

MULTIPLICATION GUIDELINES		
Stage One	Stage Two	Stage Three
Pictures / marks There are 2 socks in a pair How many socks are there in 3 pairs? The above is required before moving on to Stage 2.	Partitioning Children need to be secure with partitioning numbers into 10 s and 1s and partitioning in different ways: $6=5+1$ so e.g. Double 6 is the same as double five add double one. $\begin{array}{l\|l} \hline 2 & 3 \\ \hline 2 & \times 3=69 \\ \begin{array}{l\|l} \hline 2 & 0 \end{array} & \times 3=60 \\ 3 \times 3=9 & \end{array}$ At the end of Stage 2 the children should use the above strategies, as well as doubles of multiples of 5 and knowing the 2, 3, 4, 5, 6, 8 and 10 times tables from memory.	

MULTIPLICATION GUIDELINES		
Stage Four	Stage Five	Stage Six
$\mathrm{x}=$ signs and missing numbers Continue using a range of equations as in Stage 3 but with appropriate numbers Partition Continue to use arrays: $\begin{aligned} & 18 \times 9=162 \\ & 18 \times 9=(10 \times 9)+(8 \times 9)=162 \end{aligned}$ Use Multiplication array ITP to model partitioning into tens and ones, using the familiar visual pattern of 5 s . OR Use the grid method of multiplication (as below)$36 \times 27=$$\mathbf{x}$ $\mathbf{3 0}$ $\mathbf{6}$ $\mathbf{2 0}$ $20 \times 30=$ $20 \times 6=$ $\underline{600}$ $\underline{120}$ $\mathbf{7}$ $7 \times 30=$ $\underline{\underline{210}}$ $\underline{42}$$600+120+210+42=972$	Partition $47 \times 6=282$ $47 \times 6=(40 \times 6)+(7 \times 6)=282$ OR Use the grid method of multiplication (as below) Grid method 72×38 is approximately $70 \times 40=2800$ Remember, always present calculations horizontally in order to consider mental calculations first. Again, if the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. 23×15 should not be calculated vertically. Consider use of numbers carefully. Avoid numbers which involve x 2, x 4, $x 5, x 8$ which can be solved mentally using known facts.$382 \times 23=$$\mathbf{x}$ $\mathbf{3 0 0}$ $\mathbf{8 0}$ $\mathbf{2}$ $\mathbf{2 0}$ $20 \times 300=$ $20 \times 80=$ $20 \times 2=$ $\underline{6000}$ $\underline{1600}$ $\underline{40}$ $\mathbf{3}$ $3 \times 300=$ $3 \times 80=$ $\underline{3 \times 2}=$ $\underline{900}$ $\underline{\underline{40}}$ $\underline{\underline{6}}$$\begin{aligned} & 6000+1600+900+240+240+40+6=8986 \\ & 6000+2500+480+46=8000+980+46 \end{aligned}$ It is important to write the calculation in the grid for both the pupil and teacher to be able to identify errors made in multiplication facts or in the calculating the process. It is also a reminder that the area of the rectangle is being calculated and the system is clear.	Use the grid method of multiplication (as below) Grid method 372×24 is approximately $400 \times 20=8000$ Extend to decimals with up to two decimal places. The recording is reduced further, with carry digits recorded below the line. $\begin{array}{r} 38 \\ \times \quad 7 \\ \hline 266 \\ \hline 5 \end{array}$ Children who are already secure with multiplication for TO $\times O$ and TO \times TO should have little difficulty in using the same method for HTO \times TO or applying decimals. Long multiplication 124×26 becomes Answer: 3224

MULTIPLICATION GUIDELINES

MULTIPLICATION GUIDELINES			
Stage Four	Stage Five		Stage Six
	Most significant first $\begin{aligned} & 382 \times 23= \\ & \begin{array}{l} 300+80+2 \\ \times \quad 20+3 \\ \times \begin{array}{l} 6000 \\ (20 \times 300) \\ 1600 \\ (20 \times 80) \\ 40 \\ (20 \times 2) \\ 900 \\ 240 \\ (3 \times 300) \\ 6 \end{array}(3 \times 80) \\ \hline 8786 \end{array} \quad . \end{aligned}$ Least significant first $382 \times 23=$ $\begin{aligned} 300+80+2 & \\ \times \quad 20+3 & \\ \hline 6 & (3 \times 2) \\ 240 & (3 \times 80) \\ 900 & (3 \times 300) \\ 40 & (20 \times 2) \\ 1600 & (20 \times 80) \\ 6000 & (20 \times 300) \end{aligned}$	$300+80+2$ $\times \quad 20+3$ 6000 1600 40 900 240 6 8786$\begin{array}{r} 300+80+2 \\ \mathrm{X} \quad 20+3 \\ \hline 6 \\ 240 \\ 900 \\ 40 \\ 1600 \\ 6000 \\ \hline 8786 \end{array}$	

End of Year Objectives for Multiplication

Year 1 - practical problems that combine groups of 2, 5 or 10
Year 2 - represent multiplication as repeated + and arrays. Practical and informal written methods and vocabulary used to support multiplication alongside known facts and mental strategies. Understand and use ' 3 for free' for x and \div of the 2, 3,4,5,6, 8 and 10 times-tables.
Year 3 - Describe the effect of Ox10, TOx10, Ox100, TO x 100. Practical and informal written methods for TO \times O.
Year 4 - Derive and recall x and \div facts up to 12×12 and ' 3 for free' facts. Multiply numbers to 1000 by 10 and 100. Formal written layout and explain TO/HTO x O.
Year 5 - mentally multiply TO x 0 . Multiply whole numbers and decimals by 10, 100 and 1000 . Formal written methods to multiply ThHTO x O, ThHTO x TO, O.t x 0
Year 6 - mentally calculate TO x O, O.t X O. Formal written methods to multiply up to 4 digit by 2 digit and one digit with up to 2 decimal places.

As with addition and subtraction, before progressing through the stages of calculation:

Learning

- It is crucial to know or be able to derive key number facts:
\Rightarrow Understand and use doubling and halving
$\Rightarrow \quad x / \div 10$ (as moving a place to the left/right NOT "add a zero" etc.!!)
- Place value and partitioning MUST be clearly understood and explained using the appropriate mathematical vocabulary.

Teaching

- The number line and the use of arrays must be modelled as images to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. 23×15 should not be calculated vertically. Consider use of numbers carefully.

Always present calculations horizontally in order to consider mental calculations first.

DIVISION GUIDELINES		
Stage Four	Stage Five	Stage Six
$亡=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Sharing and grouping $60 \div 12$ can be modelled as: grouping - 12 subtracted repeatedly from 60 on a no. line, leading to subtracting 'groups' of 12. sharing - sharing among 12, the number given to each person. Remainders $41 \div 4=10 r 1$ $41=(10 \times 4)+1$ Pencil and paper procedures- Chunking. Answer: 14 remainder 2	Sharing and grouping Continue to understand division as both sharing and grouping (repeated subtraction). Remainders Pencil and paper procedures- Chunking $256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$ $\begin{array}{rr} 256 & \\ -\frac{210}{46} & 7 \times 30 \\ -\frac{42}{4} & 7 \times 6 \end{array}$ Key Facts $1 \times 7=7$ $2 \times 7=14$ Answer: 36 remainder 4 $5 \times 7=35$ Quotients expressed as fractions or decimal $10 \times 7=70$ fractions $61 \div 4=15 \frac{1}{1} / \text { or } 15.25$ Also, Short Division for More Able Children $432 \div 5$ becomes Answer: 86 remainder 2 Considering each column starting from the left.	Sharing, grouping and remainders as Stage Five Pencil and paper procedures- Chunking Answer: $27^{5 / 36}$ Pencil and Paper procedures- Short Division Method divisor $5 \longdiv { 8 4 7 } \begin{array} { l } { } \\ { \multicolumn {2} { c } \text { dividend } } \end{array}$ $496 \div 11 \text { becomes }$ Answer: $45 \frac{1}{11}$ Both methods above are necessary at this stage, to deal with the wide range of problems experienced at Stage Six.

End of Year Objectives for Division

Year 1 - practical problems that share into equal groups of 2, 5 or 10.
Year 2 - derive and recall division facts for 2, 5 or 10, represent division as repeated subtraction (grouping) and sharing.
Practical and informal written methods and vocabulary used to support division, including remainders. To know that division is not commutative.
Year 3 - Practical and informal written methods for TO \div O. Understand and use ' 3 for free' for x and \div of the 2, 3, 4, 5, 6, 8 and 10 times-tables. Round remainders up or down, depending on the context.
Year 4 - Derive and recall x facts up to 12×12 and apply ' 3 for free' facts. Divide numbers to 1000 by 10 and 100. Develop and use formal written layouts to record.
Year 5 - Divide whole numbers and decimals by 10, 100 and 1000. Divide numbers up to 4 digits by a one digit number using the formal written methods for division and interpret remainders appropriately for the context.
Year 6 - Divide numbers up to 4 digits by a 2 digit whole number using the formal written method of long division interpreting remainders as fractions, decimals, etc. Divide numbers up to 4 digits by a two digit number using the formal written methods for division and interpret remainders appropriately for the context.

As with multiplication, before progressing through the stages of calculation:

Learning

- It is crucial to know or be able to derive key number facts:
$\Rightarrow \quad$ Understand and use doubling and halving
$\Rightarrow \quad x / \div 10$ (as moving a place to the left/right NOT "add a zero" etc.!!)
- Place value and partitioning MUST be clearly understood and explained using the appropriate mathematical vocabulary.

Teaching

- The number line and the use of arrays must be modelled as images to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. $24 \div 3$ should not be calculated using short division. Consider use of numbers carefully.

